Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(13): 4380-4395, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35553672

RESUMO

Interest in understanding the role of biocrusts as ecosystem engineers in drylands has substantially increased during the past two decades. Mosses are a major component of biocrusts and dominate their late successional stages. In general, their impacts on most ecosystem functions are greater than those of early-stage biocrust constituents. However, it is common to find contradictory results regarding how moss interactions with different biotic and abiotic factors affect ecosystem processes. This review aims to (i) describe the adaptations and environmental constraints of biocrust-forming mosses in drylands, (ii) identify their primary ecological roles in these ecosystems, and (iii) synthesize their responses to climate change. We emphasize the importance of interactions between specific functional traits of mosses (e.g. height, radiation reflectance, morphology, and shoot densities) and both the environment (e.g. climate, topography, and soil properties) and other organisms to understand their ecological roles and responses to climate change. We also highlight key areas that should be researched in the future to fill essential gaps in our understanding of the ecology and the responses to ongoing climate change of biocrust-forming mosses. These include a better understanding of intra- and interspecific interactions and mechanisms driving mosses' carbon balance during desiccation-rehydration cycles.


Assuntos
Briófitas , Briófitas/fisiologia , Mudança Climática , Ecossistema , Solo , Microbiologia do Solo
2.
Earth Surf Process Landf ; 46(12): 2466-2484, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34690397

RESUMO

Biocrusts (topsoil communities formed by mosses, lichens, bacteria, fungi, algae, and cyanobacteria) are a key biotic component of dryland ecosystems. Whilst climate patterns control the distribution of biocrusts in drylands worldwide, terrain and soil attributes can influence biocrust distribution at landscape scale. Multi-source unmanned aerial vehicle (UAV) imagery was used to map and study biocrust ecology in a typical dryland ecosystem in central Spain. Red, green and blue (RGB) imagery was processed using structure-from-motion techniques to map terrain attributes related to microclimate and terrain stability. Multispectral imagery was used to produce accurate maps (accuracy > 80%) of dryland ecosystem components (vegetation, bare soil and biocrust composition). Finally, thermal infrared (TIR) and multispectral imagery was used to calculate the apparent thermal inertia (ATI) of soil and to evaluate how ATI was related to soil moisture (r 2 = 0.83). The relationship between soil properties and UAV-derived variables was first evaluated at the field plot level. Then, the maps obtained were used to explore the relationship between biocrusts and terrain attributes at ecosystem level through a redundancy analysis. The most significant variables that explain biocrust distribution are: ATI (34.4% of variance, F = 130.75; p < 0.001), Elevation (25.8%, F = 97.6; p < 0.001), and potential solar incoming radiation (PSIR) (52.9%, F = 200.1; p < 0.001). Differences were found between areas dominated by lichens and mosses. Lichen-dominated biocrusts were associated with areas with high slopes and low values of ATI, with soil characterized by a higher amount of soluble salts, and lower amount of organic carbon, total phosphorus (Ptot) and total nitrogen (Ntot). Biocrust-forming mosses dominated lower and moister areas, characterized by gentler slopes and higher values of ATI with soils with higher contents of organic carbon, Ptot and Ntot. This study shows the potential to use UAVs to improve our understanding of drylands and to evaluate the control that the terrain has on biocrust distribution.

3.
PeerJ ; 6: e5904, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479893

RESUMO

BACKGROUND: Biocrusts, communities dominated by mosses, lichens, cyanobacteria, and other microorganisms, largely affect the carbon cycle of drylands. As poikilohydric organisms, their activity time is often limited to short hydration events. The photosynthetic and respiratory response of biocrusts to hydration events is not only determined by the overall amount of available water, but also by the frequency and size of individual rainfall pulses. METHODS: We experimentally assessed the carbon exchange of a biocrust community dominated by the lichen Diploschistes diacapsis in central Spain. We compared the effect of two simulated precipitation patterns providing the same overall amount of water, but with different pulse sizes and frequency (high frequency: five mm/day vs. low frequency: 15 mm/3 days), on net/gross photosynthesis and dark respiration. RESULTS: Radiation and soil temperature, together with the watering treatment, affected the rates of net and gross photosynthesis, as well as dark respiration. On average, the low frequency treatment showed a 46% ± 3% (mean ± 1 SE) lower rate of net photosynthesis, a 13% ± 7% lower rate of dark respiration, and a 24% ± 8% lower rate of gross photosynthesis. However, on the days when samples of both treatments were watered, no differences between their carbon fluxes were observed. The carbon flux response of D. diacapsis was modulated by the environmental conditions and was particularly dependent on the antecedent soil moisture. DISCUSSION: In line with other studies, we found a synergetic effect of individual pulse size, frequency, environmental conditions, and antecedent moisture on the carbon exchange fluxes of biocrusts. However, most studies on this subject were conducted in summer and they obtained results different from ours, so we conclude that there is a need for long-term experiments of manipulated precipitation impacts on the carbon exchange of biocrusts. This will enable a more complete assessment of the impacts of climate change-induced alterations in precipitation patterns on biocrust communities.

4.
New Phytol ; 220(3): 811-823, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29380398

RESUMO

Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in drylands world-wide, few studies have evaluated how climate change will affect them. Using data from an 8-yr-old manipulative field experiment located in central Spain, we evaluated how warming, rainfall exclusion and their combination affected the dynamics of biocrust communities in areas that initially had low (< 20%, LIBC plots) and high (> 50%, HIBC plots) biocrust cover. Warming reduced the richness (35 ± 6%), diversity (25 ± 8%) and cover (82 ± 5%) of biocrusts in HIBC plots. The presence and abundance of mosses increased with warming through time in these plots, although their growth rate was much lower than the rate of lichen death, resulting in a net loss of biocrust cover. On average, warming caused a decrease in the abundance (64 ± 7%) and presence (38 ± 24%) of species in the HIBC plots. Over time, lichens and mosses colonized the LIBC plots, but this process was hampered by warming in the case of lichens. The observed reductions in the cover and diversity of lichen-dominated biocrusts with warming will lessen the capacity of drylands such as that studied here to sequester atmospheric CO2 and to provide other key ecosystem services associated to these communities.


Assuntos
Briófitas/crescimento & desenvolvimento , Mudança Climática , Líquens/fisiologia , Biodiversidade , Análise de Regressão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...